Package ‘APL’

February 18, 2026
Type Package
Title Association Plots
Version 1.14.0

Description APL is a package developed for computation of Association Plots
(AP), a method for visualization and analysis of single cell transcriptomics
data. The main focus of APL is the identification of genes characteristic for
individual clusters of cells from input data. The package performs
correspondence analysis (CA) and allows to identify cluster-specific
genes using Association Plots. Additionally, APL computes the
cluster-specificity scores for all genes which allows to rank the genes by
their specificity for a selected cell cluster of interest.

biocViews StatisticalMethod, DimensionReduction, SingleCell,
Sequencing, RNASeq, GeneExpression

License GPL (>=3)
Encoding UTF-8
RoxygenNote 7.3.2
VignetteBuilder knitr

Imports Matrix, RSpectra, ggrepel, ggplot2, viridisLite, plotly,
SeuratObject, SingleCellExperiment, magrittr,
SummarizedExperiment, topGO, methods, stats, utils,
org.Hs.eg.db, org.Mm.eg.db, rlang

Depends R (>=4.4.0)

Suggests BiocStyle, knitr, rmarkdown, scRNAseq, scater, scran,
sparseMatrixStats, testthat

Config/testthat/edition 3

Collate 'constructor.R' 'CA.R' 'apl.R' 'convert.R' 'generic_methods.R’
'import_packages.R' 'plot.R" 'utils-pipe.R'

URL https://vingronlab.github.io/APL/

git_url https://git.bioconductor.org/packages/APL

git_branch RELEASE_3_22

git_last_commit 3bb5ce8

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-02-18

https://vingronlab.github.io/APL/

2 Contents
Author Clemens Kohl [cre, aut],
Elzbieta Gralinska [aut],
Martin Vingron [aut]

Maintainer Clemens Kohl <kohl.clemens@gmail.com>

Contents
apl . . e 3
aplcoords e 4
apl_ggplot L e e 5
aplplotly 6
aplLsCore e e 8
apl_topGO 9
AS.CACOMP « & v v v v e et e 11
as.list,cacomp-method Lo 13
CACOMIP .+« . v v v v e 14
cacomp-class 18
CACOMP_NAMES . « « . v v v v e 19
cacomp_slot L 20
calc_ residuals L L e 21
ca_3Dplot e 21
ca_biplot 23
CaA_COOTAS e e s 26
check_cacomp L 27
clip_residuals 27
comp_ft_residuals 28
comp_NB_residuals 28
comp_std_residuals L. 29
elbow_method e 30
INETHIA_TOWS . . o o v o o o e e e e e e e e e e e 31
ISLBMPLY . . o o o o o e 32
permutation_cutoff L. 32
pick_dims 33
plot_enrichment 36
random_direction_cutoff L L 37
TECOMPULE . .« . v v v v v e e e et e e e e e e e e e e e e e e e e e 38
TIN_ZETOS .« v v o o v e e e e e e e e e e 38
run_APL . . e 39
TUN_CACOMIP . « « v v o v e 45
scree_plot . . . oL e e e 47
show.cacomp L. e 47
subset_dims e, 48
VAT_TOWS & v v v v v e e e e e e e e e e e e e e e e e e e 49
Do>% 49

Index 51

apl

apl

Association Plot

Description

Plot an Association Plot for the chosen columns.

Usage
apl(
caobj,
type = "ggplot”,
rows_idx = NULL,
cols_idx = caobj@group,
row_labs = FALSE,
col_labs = FALSE,
show_score = FALSE,
show_cols = FALSE,
show_rows = TRUE,
score_cutoff = 0,
score_color = "rainbow”
)
Arguments
caobj An object of class "cacomp" and "APL" with apl coordinates calculated.
type "ggplot"/"plotly". For a static plot a string "ggplot", for an interactive plot
"plotly". Default "ggplot".
rows_idx numeric/character vector. Indices or names of the rows that should be labelled.
Default NULL.
cols_idx numeric/character vector. Indices or names of the columns that should be la-
belled. Default is only to label columns making up the centroid: caobj@group.
row_labs Logical. Whether labels for rows indicated by rows_idx should be labeled with
text. Default TRUE.
col_labs Logical. Whether labels for columns indicated by cols_idx shouls be labeled

show_score
show_cols
show_rows

score_cutoff

score_color

Details

with text. Default FALSE.

Logical. Whether the S-alpha score should be shown in the plot.
Logical. Whether column points should be plotted.

Logical. Whether row points should be plotted.

Numeric. Rows (genes) with a score >= score_cutoff will be colored according
to their score if show_score = TRUE.

Either "rainbow" or "viridis".

For an interactive plot type="plotly" can be chosen, otherwise a static plot will be returned. The
row and column coordinates have to be already calculated by ‘apl_coords()*.

apl_coords

Value

Either a ggplot or plotly object.

References

Association Plots: Visualizing associations in high-dimensional correspondence analysis biplots
Elzbieta Gralinska, Martin Vingron
bioRxiv 2020.10.23.352096; doi: https://doi.org/10.1101/2020.10.23.352096

Examples

set.seed(1234)

Simulate counts

cnts <- mapply(function(x){rpois(n = 500, lambda = x)},
x = sample(1:100, 50, replace = TRUE))

rownames(cnts) <- paste@(”gene_", 1:nrow(cnts))

colnames(cnts) <- paste@(”cell_", 1:ncol(cnts))

Run correspondence analysis
ca <- cacomp(obj = cnts, princ_coords = 3)

Calculate APL coordinates for arbitrary group
ca <- apl_coords(ca, group = 1:10)

plot results

Note:

Due to random gene expression & group, no highly
associated genes are visible.

apl(ca, type = "ggplot")

apl_coords Calculate Association Plot coordinates

Description

Calculates the Association Plot coordinates for either the rows, columns or both (default).

Usage

apl_coords(caobj, group, calc_rows = TRUE, calc_cols = TRUE)

Arguments
caobj A "cacomp" object with principal row coordinates and standardized column co-
ordinates calculated.
group Numeric/Character. Vector of indices or column names of the columns to calcu-
late centroid/x-axis direction.
calc_rows TRUE/FALSE. Whether apl row coordinates should be calculated. Default TRUE.
calc_cols TRUE/FALSE. Whether apl column coordinates should be calculated. Default

TRUE.

apl_ggplot 5

Details

Coordinates (x,y) of row vector 7 are defined as
z(7) == [cos(¢(7))
y(r) := 7] sin(¢(7))

The x-direction is determined by calculating the centroid of the columns selected with the indices
in "group".

Value

Returns input "cacomp" object and adds components "apl_rows" and/or "apl_cols" for row and
column coordinates. In "group" the indices of the columns used to calculate the centroid are saved.

References

Association Plots: Visualizing associations in high-dimensional correspondence analysis biplots
Elzbieta Gralinska, Martin Vingron bioRxiv 2020.10.23.352096; doi: https://doi.org/10.1101/2020.10.23.352096

Examples

set.seed(1234)

Simulate scRNAseq data

cnts <- data.frame(cell_1 = rpois(10, 5),
cell_2 = rpois(10, 10),
cell_3 = rpois(10, 20),
cell_4 = rpois(10, 20))

rownames(cnts) <- paste@("gene_", 1:10)

cnts <- as.matrix(cnts)

Run correspondence analysis

ca <- cacomp(obj = cnts, princ_coords = 3, dims = 3)
Calculate APL coordinates

ca <- apl_coords(ca, group = 3:4)

apl_ggplot Plot Association Plot with ggplot

Description

Uses ggplot to plot an Association Plot

Usage

apl_ggplot(
rows,
rows_group = NULL,
cols,
cols_group = NULL,
rows_scored = NULL,
rows_color = "#QQ66FF",
rows_high_color = "#FF0000",

6 apl_plotly
cols_color = "#601A4A",
cols_high_color = "#EE442F",
score_color = "rainbow”,
row_labs = FALSE,
col_labs = FALSE,
show_score = FALSE,
show_cols = FALSE,
show_rows = TRUE
)
Arguments
rows Row APL-coordinates
rows_group Row AP-coordinates to highlight
cols Column AP-coordinates
cols_group Column AP-coordinates for the group to be highlighted.
rows_scored Row AP-coordinates of rows above a score cutoff.
rows_color Color for rows
rows_high_color
Color for rows to be highlighted.
cols_color Column points color.
cols_high_color
Color for column points to be highlighted..
score_color Color scheme for row points with a score.
row_labs Logical. Whether labels for rows indicated by rows_idx should be labeled with
text. Default TRUE.
col_labs Logical. Whether labels for columns indicated by cols_idx shouls be labeled
with text. Default FALSE.
show_score Logical. Whether the S-alpha score should be shown in the plot.
show_cols Logical. Whether column points should be plotted.
show_rows Logical. Whether row points should be plotted.
Value
ggplot Association Plot
apl_plotly Plot Association Plot with plotly
Description

Uses plotly to generate an interactive Association Plot

apl_plotly

Usage

apl_plotly(

rows,
rows_group = NULL,

cols,

cols_group,

rows_scored = NULL,
rows_color = "#Q066FF",
rows_high_color = "#FF0000",
cols_color = "#601A4A",
cols_high_color = "#EE442F",
score_color = "rainbow",
row_labs = FALSE,

col_labs = FALSE,

show_score = FALSE,

show_cols = FALSE,
show_rows = TRUE

)

Arguments
rows Row APL-coordinates
rows_group Row AP-coordinates to highlight
cols Column AP-coordinates
cols_group

rows_scored

rows_color

rows_high_color

cols_color

cols_high_color

score_color

row_labs

col_labs

show_score
show_cols

show_rows

Value

Column AP-coordinates for the group to be highlighted.
Row AP-coordinates of rows above a score cutoff.

Color for rows

Color for rows to be highlighted.

Column points color.

Color for column points to be highlighted.
Color scheme for row points with a score.

Logical. Whether labels for rows indicated by rows_idx should be labeled with
text. Default TRUE.

Logical. Whether labels for columns indicated by cols_idx shouls be labeled
with text. Default FALSE.

Logical. Whether the S-alpha score should be shown in the plot.
Logical. Whether column points should be plotted.
Logical. Whether row points should be plotted.

Interactive plotly Association Plot

8 apl_score
apl_score Find rows most highly associated with a condition
Description
Ranks rows by a calculated score which balances the association of the row with the condition and
how associated it is with other conditions.
Usage
apl_score(
caobj,
mat = NULL,
dims = caobj@dims,
group = caobj@group,
reps = 10,
quant = 0.99,
python = FALSE,
store_perm = TRUE,
method = "permutation”
)
Arguments
caobj A "cacomp" object with principal row coordinates and standardized column co-
ordinates calculated.
mat A numeric matrix. For sequencing a count matrix, gene expression values with
genes in rows and samples/cells in columns. Should contain row and column
names.
dims Integer. Number of CA dimensions to retain. Needs to be the same as in caobj!
group Vector of indices of the columns to calculate centroid/x-axis direction.
reps Integer. Number of permutations to perform.
quant Numeric. Single number between 0 and 1 indicating the quantile used to calcu-
late the cutoff. Default 0.99.
python DEPRACTED. A logical value indicating whether to use singular-value decom-
position from the python package torch.
store_perm Logical. Whether permuted data should be stored in the CA object. This imple-
mentation dramatically speeds up computation compared to ‘svd()‘ in R.
method Method to calculate the cutoff. Either "random" for random direction method or
"permutation” for the permutation method.
Details

The score is calculated by permuting the values of each row to determine the cutoff angle of the 99

Salpha (.’E, y) =T — tan o

By default the permutation is repeated 10 times (for random direction min. 300 repetition is rec-
ommended!), but for very large matrices this can be reduced. The method "permutation” permutes

apl_topGO 9

the columns in each row and calculates AP-coordinates for each such permutation. The cutoff is
then taken by the quantile specified by "quan". The "random" method in contrast calculates AP-
coordinates for the original data, but by looking into random directions.

If store_perm is TRUE the permuted data is stored in the cacomp object and can be used for future
scoring.

Value

Returns the input "cacomp" object with "APL_score" component added. APL_score contains a data
frame with ranked rows, their score and their original row number.

References

Association Plots: Visualizing associations in high-dimensional correspondence analysis biplots
Elzbieta Gralinska, Martin Vingron
bioRxiv 2020.10.23.352096; doi: https://doi.org/10.1101/2020.10.23.352096

Examples

set.seed(1234)

Simulate counts

cnts <- mapply(function(x){rpois(n = 500, lambda = x)},
x = sample(1:20, 50, replace = TRUE))

rownames(cnts) <- paste@(”gene_", 1:nrow(cnts))

colnames(cnts) <- paste@(”cell_", 1:ncol(cnts))

Run correspondence analysis.
ca <- cacomp(obj = cnts, princ_coords = 3)

Calculate APL coordinates:
ca <- apl_coords(ca, group = 1:10)

Rank genes by S-alpha score
ca <- apl_score(ca, mat = cnts)

apl_topGO Run Gene overrepresentation analysis with topGO

Description

This function uses the Kolmogorov-Smirnov test as implemented by the package topGO to test for
overrepresentation in Gene Ontology gene sets.

Usage

apl_topGO(
caobj,
ontology,
organism = "hs",
ngenes = 1000,
score_cutoff = 0,
use_coords = FALSE,

10

apl_topGO

return_plot = FALSE,

top_res =

)

Arguments

caobj

ontology

organism

ngenes
score_cutoff

use_coords

return_plot

top_res

Details

A "cacomp" object with principal row coordinates and standardized column co-
ordinates calculated.

Character string. Chooses GO sets for "BP’ (biological processes), *CC’ (cell
compartment) or 'MF’ (molecular function).

Character string. Either ’hs’ (homo sapiens), 'mm’ (mus musculus) or the name
of the organism package such as ’org.*.eg.db’.

Numeric. Number of top ranked genes to test for overrepresentation.
numeric. S-alpha score cutoff. Only genes with a score larger will be tested.

Logical. Whether the x-coordinates of the row APL coordinates should be used
for ranking. Only recommended when no S-alpha score (see apl_score()) can be
calculated.

Logical. Whether a plot of significant gene sets should be additionally returned.

Numeric. Number of top scoring genes to plot.

For a chosen group of cells/samples, the top 'ngenes’ group specific genes are used for gene over-
representation analysis. The genes are ranked either by the precomputed APL score, or, if not
available by their APL x-coordinates.

Value

A data.frame containing the gene sets with the highest overrepresentation.

References

Adrian Alexa and Jorg Rahnenfuhrer
topGO: Enrichment Analysis for Gene Ontology.
R package version 2.42.0.

Examples

library(SeuratObject)

set.seed(1234)

cnts <- SeuratObject::LayerData(pbmc_small, assay = "RNA", layer = "counts")
cnts <- as.matrix(cnts)

Run CA on example from Seurat

ca <- cacomp(pbmc_small,
princ_coords = 3,
return_input = FALSE,
assay = "RNA",

slot

= "counts")

grp <- which(Idents(pbmc_small) == 2)
ca <- apl_coords(ca, group = grp)

as.cacomp 11

ca <- apl_score(ca,
mat = cnts)

enr <- apl_topGO(ca,

ontology = "BP",
organism = "hs")
plot_enrichment(enr)
as.cacomp Create cacomp object from Seurat/SingleCellExperiment container

Description

Converts the values stored in the Seurat/SingleCellExperiment dimensional reduction slot "CA" to a
cacomp object. If recompute = TRUE additional parameters are recomputed from the saved values
without rerunning SVD (need to specify assay to work).

as.cacomp.cacomp returns input without any calculations.

Recomputes missing values and returns cacomp object from a list. If you have a *complete* cacomp
object in list form, use do.call(new_cacomp, obj).

as.cacomp.Seurat: Converts the values stored in the Seurat DimReduc slot "CA" to an cacomp
object.

as.cacomp.SingleCellExperiment: Converts the values stored in the SingleCellExperiment reduced-
Dim slot "CA" to a cacomp object.

Usage

as.cacomp(obj, ...)

S4 method for signature 'cacomp'
as.cacomp(obj, ...)

S4 method for signature 'list'
as.cacomp(obj, ..., mat = NULL)

S4 method for signature 'Seurat'’
as.cacomp(obj, ..., assay = "RNA", slot = "counts")

S4 method for signature 'SingleCellExperiment'’

as.cacomp(obj, ..., assay = "counts")
Arguments
obj An object of class "Seurat" or "SingleCellExperiment" with a dim. reduction

named "CA" saved. For obj "cacomp" input is returned.
Further arguments.
mat Original input matrix.

assay Character. The assay from which extract the count matrix, e.g. "RNA" for Seurat
objects or "counts"/"logcounts" for SingleCellExperiments.

slot character. Slot of the Seurat assay to use. Default "counts".

12 as.cacomp

Details

By default extracts std_coords_cols, D, prin_coords_rows, top_rows and dims from obj and outputs
a cacomp object. If recompute = TRUE the following are additionally recalculated (doesn’t run
SVD): U, V, std_coords_rows, row_masses, col_masses.

Value

A cacomp object.

Examples

W
lists
S

Simulate counts
cnts <- mapply(function(x){rpois(n = 500, lambda = x)},
X = sample(1:100, 50, replace = TRUE))

rownames(cnts) <- paste@(”gene_", 1:nrow(cnts))
colnames(cnts) <- paste@("cell_", 1:ncol(cnts))

Run correspondence analysis
ca <- cacomp(obj = cnts, princ_coords = 3)
ca_list <- as.list(ca)

Only keep subset of elements for demonstration
ca_list <- ca_list[c("U", "std_coords_rows”, "std_coords_cols”, "params")]

convert (incomplete) list to cacomp object.
ca <- as.cacomp(ca_list, mat = cnts)

HHHHHAE

Seurat
HHHHHHEEHE
library(SeuratObject)
set.seed(1234)

Simulate counts

cnts <- mapply(function(x){rpois(n = 500, lambda = x)},
x = sample(1:100, 50, replace = TRUE))

rownames(cnts) <- paste@("gene_", T:nrow(cnts))

colnames(cnts) <- paste@("cell_", 1:ncol(cnts))

seu <- CreateSeuratObject(counts = cnts)

seu <- cacomp(seu, return_input = TRUE)

ca <- as.cacomp(seu, assay = "RNA", slot = "counts")

HHHH

SingleCellExperiment
A
library(SingleCellExperiment)
set.seed(1234)

Simulate counts
cnts <- mapply(function(x){rpois(n = 500, lambda = x)},

as.list,cacomp-method

x = sample(1:100, 50, replace = TRUE))
rownames(cnts) <- paste@("gene_", T:nrow(cnts))
colnames(cnts) <- paste@("cell_", 1:ncol(cnts))

sce <- SingleCellExperiment(assays=list(counts=cnts))
sce <- cacomp(sce, return_input = TRUE)

ca <- as.cacomp(sce, assay = "counts")

13

as.list,cacomp-method Convert cacomp object to list.

Description

Convert cacomp object to list.

Usage

S4 method for signature 'cacomp'
as.list(x)

Arguments

X A cacomp object.

Value

A cacomp object.

Examples

Simulate counts

cnts <- mapply(function(x){rpois(n = 500, lambda = x)},
X = sample(1:100, 50, replace = TRUE))

rownames(cnts) <- paste@(”gene_", 1:nrow(cnts))

colnames(cnts) <- paste@("cell_", 1:ncol(cnts))

Run correspondence analysis
ca <- cacomp(obj = cnts, princ_coords = 3)
ca_list <- as.list(ca)

14

cacomp

cacomp

Correspondance Analysis

Description

‘cacomp’ performs correspondence analysis on a matrix or Seurat/SingleCellExperiment object and
returns the transformed data.

‘cacomp.seurat* performs correspondence analysis on an assay from a Seurat container and stores
the standardized coordinates of the columns (= cells) and the principal coordinates of the rows (=

genes) as a DimReduc Object in the Seurat container.

‘cacomp.SingleCellExperiment® performs correspondence analysis on an assay from a SingleCell-
Experiment and stores the standardized coordinates of the columns (= cells) and the principal coor-

dinates of the rows (= genes) as a matrix in the SingleCellExperiment container.

Usage

cacomp(

)

obj,

coords = TRUE,
princ_coords = 3,
python = FALSE,
dims = NULL,

top = 5000,
inertia = TRUE,
rm_zeros = TRUE,
residuals = "pearson”,
cutoff = NULL,
clip = FALSE,

S4 method for signature
cacomp(

)

S4 method for signature 'dgCMatrix'

obj,

coords = TRUE,
princ_coords = 3,
python = FALSE,
dims = NULL,

top = 5000,
inertia = TRUE,
rm_zeros = TRUE,
residuals = "pearson”,
cutoff = NULL,
clip = FALSE,

cacomp(

obj,

'matrix’

cacomp

coords = TRUE,
princ_coords = 3,
python = FALSE,

dims = NULL,

top = 5000,

inertia = TRUE,
rm_zeros = TRUE,
residuals = "pearson”,
cutoff = NULL,

clip = FALSE,

)

S4 method for signature 'Seurat'’
cacomp(
obj,
coords = TRUE,
princ_coords = 3,
python = FALSE,
dims = NULL,
top = 5000,
inertia = TRUE,
rm_zeros = TRUE,
residuals = "pearson”,
cutoff = NULL,
clip = FALSE,
assay = SeuratObject::DefaultAssay(obj),
slot = "counts”,
return_input = FALSE
)

S4 method for signature 'SingleCellExperiment'’
cacomp(
obj,
coords = TRUE,
princ_coords = 3,
python = FALSE,
dims = NULL,
top = 5000,
inertia = TRUE,
rm_zeros = TRUE,
residuals = "pearson”,
cutoff = NULL,
clip = FALSE,
assay = "counts”,
return_input = FALSE

16 cacomp

Arguments
obj A numeric matrix or Seurat/SingleCellExperiment object. For sequencing a
count matrix, gene expression values with genes in rows and samples/cells in
columns. Should contain row and column names.
coords Logical. Indicates whether CA standard coordinates should be calculated.

princ_coords Integer. Number indicating whether principal coordinates should be calculated
for the rows (=1), columns (=2), both (=3) or none (=0).

python DEPRACTED. A logical value indicating whether to use singular-value de-
composition from the python package torch. This implementation dramatically
speeds up computation compared to ‘svd()‘ in R when calculating the full SVD.
This parameter only works when dims==NULL or dims==rank(mat), where
caculating a full SVD is demanded.

dims Integer. Number of CA dimensions to retain. If NULL: (0.2 * min(nrow(A),
ncol(A))-1).

top Integer. Number of most variable rows to retain. Set NULL to keep all.

inertia Logical. Whether total, row and column inertias should be calculated and re-
turned.

rm_zeros Logical. Whether rows & cols containing only Os should be removed. Keeping
zero only rows/cols might lead to unexpected results.

residuals character string. Specifies which kind of residuals should be calculated. Can be
"pearson” (default), "freemantukey" or "NB" for negative-binomial.

cutoff numeric. Residuals that are larger than cutoff or lower than -cutoff are clipped
to cutoff.

clip logical. Whether residuals should be clipped if they are higher/lower than a
specified cutoff

Other parameters

assay Character. The assay from which extract the count matrix for SVD, e.g. "RNA"
for Seurat objects or "counts"/"logcounts" for SingleCellExperiments.

slot character. The slot of the Seurat assay. Default "counts".

return_input Logical. If TRUE returns the input (SingleCellExperiment/Seurat object) with
the CA results saved in the reducedDim/DimReduc slot "CA". Otherwise re-
turns a "cacomp". Default FALSE.

Details

The calculation is performed according to the work of Michael Greenacre. Singular value decom-
position can be performed either with the base R function ‘svd‘ or preferably by the faster pytorch
implementation (python = TRUE). When working with large matrices, CA coordinates and princi-
pal coordinates should only be computed when needed to save computational time.

Value

Returns a named list of class "cacomp" with components U, V and D: The results from the SVD.
row_masses and col_masses: Row and columns masses. top_rows: How many of the most variable
rows were retained for the analysis. tot_inertia, row_inertia and col_inertia: Only if inertia = TRUE.
Total, row and column inertia respectively.

If return_imput = TRUE with Seurat container: Returns input obj of class "Seurat" with a new
Dimensional Reduction Object named "CA". Standard coordinates of the cells are saved as embed-
dings, the principal coordinates of the genes as loadings and the singular values (= square root of

cacomp 17

principal intertias/eigenvalues) are stored as stdev. To recompute a regular "cacomp" object without
rerunning cacomp use ‘as.cacomp()‘.

If return_input =TRUE for SingleCellExperiment input returns a SingleCellExperiment object with
a matrix of standardized coordinates of the columns in reducedDim(obj, "CA"). Additionally, the
matrix contains the following attributes: "prin_coords_rows": Principal coordinates of the rows.
"singval": Singular values. For the explained inertia of each principal axis calculate singval”2.
"perclnertia": Percent explained inertia of each principal axis. To recompute a regular "cacomp"
object from a SingleCellExperiment without rerunning cacomp use ‘as.cacomp()‘.

References

Greenacre, M. Correspondence Analysis in Practice, Third Edition, 2017.

Examples

Simulate scRNAseq data.

cnts <- data.frame(cell_1 rpois(10, 5),
cell_2 = rpois(10, 10),
cell_3 = rpois(10, 20))

rownames(cnts) <- paste@("gene_", 1:10)

cnts <- as.matrix(cnts)

Run correspondence analysis.
ca <- cacomp(obj = cnts, princ_coords = 3, top = 5)

HHEHRHEARNR

Seurat
AR
library(SeuratObject)
set.seed(1234)

Simulate counts
cnts <- mapply(function(x){rpois(n = 500, lambda = x)},

x = sample(1:20, 50, replace = TRUE))
rownames(cnts) <- paste@("gene_", T:nrow(cnts))
colnames(cnts) <- paste@("cell_", 1:ncol(cnts))

Create Seurat object
seu <- CreateSeuratObject(counts = cnts)

Run CA and save in dim. reduction slot
seu <- cacomp(seu, return_input = TRUE, assay

"RNA", slot = "counts")

Run CA and return cacomp object
ca <- cacomp(seu, return_input = FALSE, assay = "RNA", slot = "counts")

HHHHHHAEEE

SingleCellExperiment
HHHEHHEEEERE A
library(SingleCellExperiment)
set.seed(1234)

Simulate counts

cnts <- mapply(function(x){rpois(n = 500, lambda = x)},
x = sample(1:20, 50, replace = TRUE))

rownames(cnts) <- paste@("gene_", T:nrow(cnts))

18 cacomp-class

colnames(cnts) <- paste@(”cell_", 1:ncol(cnts))
logents <- log2(cnts + 1)

Create SingleCellExperiment object
sce <- SingleCellExperiment(assays=list(counts=cnts, logcounts=logcnts))

run CA and save in dim. reduction slot.
sce <- cacomp(sce, return_input = TRUE, assay = "counts”) # on counts

sce <- cacomp(sce, return_input = TRUE, assay = "logcounts”) # on logcounts

run CA and return cacomp object.

ca <- cacomp(sce, return_input = FALSE, assay = "counts")
cacomp-class An 84 class that contains all elements needed for CA.
Description

This class contains elements necessary to computer CA coordinates or Association Plot coordinates,
as well as other informative data such as row/column inertia, gene-wise APL-scores, etc. ...

Creates new cacomp object.

Usage

new_cacomp(...)

Arguments

slot names and objects for new cacomp object.

Value

cacomp object

Slots

U class "matrix". Left singular vectors of the original input matrix.

V class "matrix". Right singular vectors of the original input matrix.

D class "numeric". Singular values of the original inpt matrix.
std_coords_rows class "matrix". Standardized CA coordinates of the rows.
std_coords_cols class "matrix". Standardized CA coordinates of the columns.
prin_coords_rows class "matrix". Principal CA coordinates of the rows.
prin_coords_cols class "matrix". Principal CA coordinates of the columns.

apl_rows class "matrix". Association Plot coordinates of the rows for the direction defined in slot
llgroup"

apl_cols class "matrix". Association Plot coordinates of the columns for the direction defined in
slot "group"

APL_score class "data.frame". Contains rows sorted by the APL score. Columns: Rowname (gene
name in the case of gene expression data), APL score calculated for the direction defined in
slot "group", the original row number and the rank of the row as determined by the score.

cacomp_names 19

i umeric". Nu i ions i .
dims class "numeric". Number of dimensions in CA space
group class "numeric". Indices of the chosen columns for APL calculations.
row_masses class "numeric". Row masses of the frequency table.
col_masses class "numeric". Column masses of the frequency table.
top_rows class "numeric". Number of most variable rows chosen.
tot_inertia class "numeric". Total inertia in CA space.
row_inertia class "numeric". Row-wise inertia in CA space.
col_inertia class "numeric". Column-wise inertia in CA space.
permuted_data class "list". Storage slot for permuted data.

params class "list". List of parameters.

Examples

set.seed(1234)

Simulate counts

cnts <- mapply(function(x){rpois(n = 500, lambda = x)},
x = sample(1:20, 50, replace = TRUE))

rownames(cnts) <- paste@(”gene_", 1:nrow(cnts))

colnames(cnts) <- paste@("cell_", 1:ncol(cnts))

res <- APL:::comp_std_residuals(mat=cnts)
SVD <- svd(res$S)

names(SVD) <- c("D", "U", "V")

SVD <- SVD[c(2, 1, 3)]

ca <- new_cacomp(U = SVD$U,
V = SVD$V,
D = SVD$D,

row_masses = res$rowm,
col_masses = res$colm)

cacomp_names Prints slot names of cacomp object

Description

Prints slot names of cacomp object

Usage

cacomp_names(caobj)

Arguments

caobj a cacomp object

Value

Prints slot names of cacomp object

20

Examples

Simulate scRNAseq data.
cnts <- data.frame(cell_1

rpois(10, 5),

cell_2 = rpois(10, 10),
cell_3 = rpois(10, 20))
rownames(cnts) <- paste@("gene_", 1:10)

cnts <- as.matrix(cnts)

Run correspondence analysis.
ca <- cacomp(obj = cnts, princ_coords =

show slot names:
cacomp_names(ca)

3, top

5)

cacomp_slot

cacomp_slot

Access slots in a cacomp object

Description

Access slots in a cacomp object

Usage

cacomp_slot(caobj, slot)

Arguments
caobj a cacomp object
slot slot to return
Value

Chosen slot of the cacomp object

Examples

Simulate scRNAseq data.

cnts <- data.frame(cell_1 = rpois(10, 5),
cell_2 = rpois(10, 10),
cell_3 = rpois(10, 20))

rownames(cnts) <- paste@("gene_", 1:10)

cnts <- as.matrix(cnts)

Run correspondence analysis.
ca <- cacomp(obj = cnts, princ_coords =

access left singular vectors

cacomp_slot(ca, "U")

3, top

5)

calc_residuals 21

calc_residuals Calculate residuals for Correspondence analysis

Description

calc_residuals provides optional residuals as the basis for Correspondence Analysis

Usage

calc_residuals(mat, residuals = "pearson”, clip = FALSE, cutoff = NULL)

Arguments
mat A numerical matrix or coercible to one by ‘as.matrix()‘. Should have row and
column names.
residuals character string. Specifies which kind of residuals should be calculated. Can be
"pearson" (default), "freemantukey" or "NB" for negative-binomial.
clip logical. Whether residuals should be clipped if they are higher/lower than a
specified cutoff
cutoff numeric. Residuals that are larger than cutoff or lower than -cutoff are clipped
to cutoff.
Value

A named list. The elements are:

e "S": standardized residual matrix.
* "tot": grand total of the original matrix.
e "rowm'": row masses.

e "colm": column masses.

ca_3Dplot Plot of the first 3D CA projection of the data.

Description

Plots the first 3 dimensions of the rows and columns in the same plot.

Usage
ca_3Dplot(
obj,
xdim = 1,
ydim = 2,
zdim = 3,

princ_coords = 1,
row_labels = NULL,
col_labels

1
=
c
=
-

22 ca_3Dplot
)
S4 method for signature 'cacomp'
ca_3Dplot(
obj,
xdim = 1,
ydim = 2,
zdim = 3,
princ_coords = 1,
row_labels = NULL,
col_labels = NULL,
)
S4 method for signature 'Seurat'’
ca_3Dplot(
obj,
xdim = 1,
ydim = 2,
zdim = 3,
princ_coords = 1,
row_labels = NULL,
col_labels = NULL,
assay = SeuratObject: :DefaultAssay(obj),
slot = "counts”
)
S4 method for signature 'SingleCellExperiment'
ca_3Dplot(
obj,
xdim = 1,
ydim = 2,
zdim = 3,
princ_coords = 1,
row_labels = NULL,
col_labels = NULL,
assay = "counts”
)
Arguments
obj An object of class "cacomp”, or alternatively an object of class "Seurat" or "Sin-
gleCellExperiment" with a dim. reduction named "CA" saved.
xdim Integer. The dimension for the x-axis. Default 1.
ydim Integer. The dimension for the y-axis. Default 2.
zdim Integer. The dimension for the z-axis. Default 3.

princ_coords Integer. If 1 then principal coordinates are used for the rows, if 2 for the columns.

Default 1 (rows).

ca_biplot 23

row_labels Numeric vector. Indices for the rows for which a label should be added (label
should be stored in rownames). Default NULL.

col_labels Numeric vector. Indices for the columns for which a label should be added (label
should be stored in colnames). Default NULL (no columns).

Further arguments.

assay SingleCellExperiment assay to obtain counts from.
slot Seurat slot from assay to get count matrix from.
Details

Depending on whether ‘princ_coords* is set to 1 or 2 either the principal coordinates of either the
rows (1) or the columns (2) are chosen. For the other the standardized coordinates are plotted
(assymetric biplot). Labels for rows and columns should be stored in the row- and column names
respectively.

Value

Plot of class "plotly".

Examples

Simulate counts
cnts <- mapply(function(x){rpois(n = 500, lambda = x)},
X = sample(1:100, 50, replace = TRUE))

rownames(cnts) <- paste@(”gene_", 1:nrow(cnts))
colnames(cnts) <- paste@("cell_", 1:ncol(cnts))

Run correspondence analysis
ca <- cacomp(obj = cnts, princ_coords = 3)

ca_3Dplot(ca)

ca_biplot Plot of 2D CA projection of the data.

Description

Plots the first 2 dimensions of the rows and columns in the same plot.

Usage
ca_biplot(
obj,
xdim = 1,
ydim = 2,

princ_coords = 1,
row_labels = NULL,
col_labels = NULL,
type = "ggplot”,
col_metadata = NULL,
row_metadata = NULL,

24

)

show_all = TRUE,

S4 method for signature 'cacomp'
ca_biplot(

)

obj,

xdim = 1,

ydim = 2,
princ_coords = 1,
row_labels = NULL,
col_labels = NULL,
type = "ggplot”,
col_metadata = NULL,
row_metadata = NULL,
show_all = TRUE,

S4 method for signature 'Seurat'’
ca_biplot(

)

obj,

xdim = 1,

ydim = 2,
princ_coords = 1,
row_labels = NULL,
col_labels = NULL,
type = "ggplot”,
col_metadata = NULL,
row_metadata = NULL,
show_all = TRUE,
assay = SeuratObject::DefaultAssay(obj),
slot = "counts”

S4 method for signature 'SingleCellExperiment'’
ca_biplot(

obj,

xdim = 1,

ydim = 2,
princ_coords = 1,
row_labels = NULL,
col_labels = NULL,
type = "ggplot”,
col_metadata = NULL,
row_metadata = NULL,
show_all = TRUE,

*

assay = "counts”

ca_biplot

ca_biplot 25
Arguments
obj An object of class "cacomp" with the relevant standardized and principal coor-
dinates calculated, or alternatively an object of class "Seurat" or "SingleCellEx-
periment" with a dim. reduction named "CA" saved.
xdim Integer. The dimension for the x-axis. Default 1.
ydim Integer. The dimension for the y-axis. Default 2.

princ_coords

Integer. If 1 then principal coordinates are used for the rows, if 2 for the columns.
Default 1 (rows).

row_labels Numeric vector. Indices for the rows for which a label should be added (label
should be stored in rownames). Default NULL.

col_labels Numeric vector. Indices for the columns for which a label should be added (label
should be stored in colnames). Default NULL (no columns).

type String. Type of plot to draw. Either "ggplot" or "plotly". Default "ggplot".

col_metadata

row_metadata

named vector of additional metadata to color points. The names of the elements
in col_metadata should correspond to the column names in ’obj’. If NULL
columns will be in a single color. Can also specify a metadata column for Seu-
rat/SingleCellExperiment objects.

named vector of additional metadata to color points. The names of the ele-
ments in row_metadata should correspond to the row names in ’obj’. If NULL
rows will be in a single color. Can also specify a metadata column for Seu-
rat/SingleCellExperiment objects.

show_all logical. If FALSE cells/genes that are not in col_metadata/ row_metadata are
not plotted. If *_metadata is NULL, the cell or genes respectively will still be
plotted.
Further arguments.
assay SingleCellExperiment assay for recomputation
slot Seurat assay slot from which to get matrix.
Details

Choosing type "plotly" will generate an interactive html plot with the package plotly. Type "ggplot"
generates a static plot. Depending on whether ‘princ_coords* is set to 1 or 2 either the principal
coordinates of either the rows (1) or the columns (2) are chosen. For the other the standard coordi-
nates are plotted (assymetric biplot). Labels for rows and columns should be stored in the row and
column names respectively.

Value

Plot of class "plotly" or "ggplot".

Examples

Simulate counts
cnts <- mapply(function(x){rpois(n = 500, lambda = x)},
x = sample(1:100, 50, replace = TRUE))

rownames(cnts) <- paste@("gene_", T:nrow(cnts))
colnames(cnts) <- paste@("cell_", 1:ncol(cnts))

Run correspondence analysis

26 ca_coords

ca <- cacomp(obj = cnts, princ_coords = 3)

ca_biplot(ca)

ca_coords Calculate correspondence analysis row and column coordinates.

Description
‘ca_coords* calculates the standardized and principal coordinates of the rows and columns in CA
space.

Usage

ca_coords(caobj, dims = NULL, princ_coords = 3, princ_only = FALSE)

Arguments
caobj A "cacomp" object as outputted from ‘cacomp()‘.
dims Integer indicating the number of dimensions to use for the calculation of coor-

dinates. All elements of caobj (where applicable) will be reduced to the given
number of dimensions. Default NULL (keeps all dimensions).

princ_coords Integer. Number indicating whether principal coordinates should be calculated
for the rows (=1), columns (=2), both (=3) or none (=0). Default 3.

princ_only Logical, whether only principal coordinates should be calculated. Or, in other
words, whether the standardized coordinates are already calculated and stored
in ‘caobj‘. Default ‘FALSE".

Details

Takes a "cacomp" object and calculates standardized and principal coordinates for the visualization
of CA results in a biplot or to subsequently calculate coordinates in an Association Plot.

Value

Returns input object with coordinates added. std_coords_rows/std_coords_cols: Standardized coor-
dinates of rows/columns. prin_coords_rows/prin_coords_cols: Principal coordinates of rows/columns.

Examples

Simulate scRNAseq data.

cnts <- data.frame(cell_1 rpois(10, 5),
cell_2 = rpois(10, 10),
cell_3 = rpois(10, 20))

rownames(cnts) <- paste@("gene_", 1:10)

cnts <- as.matrix(cnts)

Run correspondence analysis.
ca <- cacomp(obj = cnts, princ_coords = 1)
ca <- ca_coords(ca, princ_coords = 3)

check_cacomp 27

check_cacomp Check if cacomp object was correctly created.

Description

Checks if the slots in a cacomp object are of the correct size and whether they are coherent.

Usage

check_cacomp(object)

Arguments

object A cacomp object.

Value

TRUE if it is a valid cacomp object. FALSE otherwise.

Examples

Simulate scRNAseq data.

cnts <- data.frame(cell_1 = rpois(10, 5),
cell_2 = rpois(10, 10),
cell_3 = rpois(10, 20))

rownames(cnts) <- paste@("gene_", 1:10)

cnts <- as.matrix(cnts)

Run correspondence analysis.
ca <- cacomp(obj = cnts, princ_coords = 3, top = 5)

check_cacomp(ca)

clip_residuals Perform clipping of residuals

Description

Clips Pearson or negative-binomial residuals above or below a determined value. For Pearson
(Poisson) residuals it is set by default for 1, for NB at sqrt(n).

Usage

clip_residuals(S, cutoff = sqrt(ncol(S)))

Arguments

S Matrix of residuals.

cutoff Value above/below which clipping should happen.

28 comp_NB_residuals

Value

Matrix of clipped residuals.

References

Lause, J., Berens, P. & Kobak, D. Analytic Pearson residuals for normalization of single-cell RNA-
seq UMI data. Genome Biol 22, 258 (2021). https://doi.org/10.1186/s13059-021-02451-7

comp_ft_residuals Compute Freeman-Tukey residuals

Description

Computes Freeman-Tukey residuals

Usage

comp_ft_residuals(mat)

Arguments
mat A numerical matrix or coercible to one by ‘as.matrix()‘. Should have row and
column names.
Value

A named list. The elements are:

e "S": standardized residual matrix.
* "tot": grand total of the original matrix.
e "rowm'": row masses.

e "colm": column masses.

comp_NB_residuals Compute Negative-Binomial residuals

Description

Computes the residuals based on the negative binomial model. By default a theta of 100 is used to
capture technical variation.

Usage

comp_NB_residuals(mat, theta = 100, clip = FALSE, cutoff = NULL, freq = TRUE)

comp_std_residuals 29

Arguments
mat A numerical matrix or coercible to one by ‘as.matrix()‘. Should have row and
column names.
theta Overdispersion parameter. By default set to 100 as described in Lause and
Berens, 2021 (see references).
clip logical. Whether residuals should be clipped if they are higher/lower than a
specified cutoff
cutoff numeric. Residuals that are larger than cutoff or lower than -cutoff are clipped
to cutoff.
freq logical. Whether a table of frequencies (as used in CA) should be used.
Value

A named list. The elements are:

e "S": standardized residual matrix.
* "tot": grand total of the original matrix.
e "rowm'": row masses.

e "colm": column masses.

References

Lause, J., Berens, P. & Kobak, D. Analytic Pearson residuals for normalization of single-cell RNA-
seq UMI data. Genome Biol 22, 258 (2021). https://doi.org/10.1186/s13059-021-02451-7

comp_std_residuals Compute Standardized Residuals

Description

‘comp_std_residuals‘ computes the standardized residual matrix S based on the Poisson model,
which is the basis for correspondence analysis and serves as input for singular value decomposition
(SVD).

Usage

comp_std_residuals(mat, clip = FALSE, cutoff = NULL)

Arguments
mat A numerical matrix or coercible to one by ‘as.matrix()‘. Should have row and
column names.
clip logical. Whether residuals should be clipped if they are higher/lower than a
specified cutoff
cutoff numeric. Residuals that are larger than cutoff or lower than -cutoff are clipped

to cutoff.

30

Details

elbow_method

Calculates standardized residual matrix S from the proportion matrix P and the expected values E

according to S =

Value

(P=E)
sqrt(E) "

A named list. The elements are:

e "S": standardized residual matrix.

* "tot": grand total of the original matrix.

e "rowm'": row masses.

e "colm": column masses.

elbow_method

Runs elbow method

Description

Helper function for pick_dims() to run the elbow method.

Usage

elbow_method(obj, mat, reps, python = FALSE, return_plot = FALSE)

Arguments

obj

mat

reps

python

return_plot

Value

A "cacomp" object as outputted from ‘cacomp()‘

A numeric matrix. For sequencing a count matrix, gene expression values with
genes in rows and samples/cells in columns. Should contain row and column
names.

Integer. Number of permutations to perform when choosing "elbow_rule".

A logical value indicating whether to use singular value decomposition from the
python package torch. This implementation dramatically speeds up computation
compared to ‘svd()‘ in R.

TRUE/FALSE. Whether a plot should be returned when choosing "elbow_rule".

‘elbow_method* (for ‘return_plot=TRUE®) returns a list with two elements: "dims" contains the
number of dimensions and "plot" a ggplot. if ‘return_plot=TRUE® it just returns the number of

picked dimensions.

References

Ciampi, Antonio, Gonzdlez Marcos, Ana and Castejon Limas, Manuel.
Correspondence analysis and 2-way clustering. (2005), SORT 29(1).

inertia_rows 31

Examples

Get example data from Seurat

library(SeuratObject)

set.seed(2358)

cnts <- as.matrix(SeuratObject::LayerData(pbmc_small,
assay = "RNA",
layer = "data"))

Run correspondence analysis.

ca <- cacomp(obj = cnts)

pick dimensions with the elbow rule. Returns list.
pd <- pick_dims(obj = ca,

mat = cnts,

method = "elbow_rule”,
return_plot = TRUE,
reps = 10)

pd$plot
ca_sub <- subset_dims(ca, dims = pd$dims)

inertia_rows Find most variable rows

Description

Calculates the contributing inertia of each row which is defined as sum of squares of pearson resid-
uals and selects the rows with the largested inertias, e.g. 5,000.

Usage
inertia_rows(mat, top = 5000, ...)
Arguments
mat A matrix with genes in rows and cells in columns.
top Number of genes to select.
Further arguments for ‘comp_std_residuals®
Value

Returns a matrix, which consists of the top variable rows of mat.

32

permutation_cutoff

is.empty Helper function to check if object is empty.

Description

Helper function to check if object is empty.

Usage

is.empty(x)

Arguments

X

Value

object

TRUE if x has length 0 and is not NULL. FALSE otherwise

permutation_cutoff Calculates permuted association plot coordinates

Description

Calculates matrix of apl coordinates when permuting the original data.

Usage

permutation_cutoff(

caobj,

mat,

group = caobj@group,
dims = caobj@dims,
reps = 10,
store_perm = FALSE,
python = TRUE

)
Arguments

caobj A "cacomp" object with principal row coordinates and standardized column co-
ordinates calculated.

mat A numeric matrix. For sequencing a count matrix, gene expression values with
genes in rows and samples/cells in columns. Should contain row and column
names.

group Vector of indices of the columns to calculate centroid/x-axis direction.

dims Integer. Number of CA dimensions to retain. Needs to be the same as in caobj!

reps Integer. Number of permutations to perform.

pick_dims 33

store_perm Logical. Whether permuted data should be stored in the CA object. This imple-
mentation dramatically speeds up computation compared to ‘svd()‘ in R.

python DEPRACTED. A logical value indicating whether to use singular-value decom-
position from the python package torch.

Value

List with permuted apl coordinates ("apl_perm") and, a list of saved ca components ("saved_ca")
that allow for quick recomputation of the CA results. For random_direction_cutoff this saved_ca is
empty.

pick_dims Compute statistics to help choose the number of dimensions

Description

s

"elbow_rule") to estimate the number of dimensions that best represent the data.

Allow the user to choose from 4 different methods ("avg_inertia", "maj_inertia", "scree_plot" and

Usage

pick_dims(
obj,
mat = NULL,
method = "scree_plot”,
reps = 3,
python = FALSE,
return_plot = FALSE,

)

S4 method for signature 'cacomp'
pick_dims(

obj,

mat = NULL,

method = "scree_plot”,

reps = 3,

python = FALSE,

return_plot = FALSE,

I w 1

)

S4 method for signature 'Seurat'’
pick_dims(
obj,
mat = NULL,
method = "scree_plot”,
reps = 3,
python = FALSE,
return_plot = FALSE,

L

34

pick_dims

assay = SeuratObject::DefaultAssay(obj),

slot = "counts”
)
S4 method for signature 'SingleCellExperiment'’
pick_dims(
obj,
mat = NULL,
method = "scree_plot”,
reps = 3,
python = FALSE,
return_plot = FALSE,
assay = "counts”
)
Arguments
obj A "cacomp" object as outputted from cacomp(), a "Seurat" object with a "CA"
DimReduc object stored, or a "SingleCellExperiment" object with a "CA" dim.
reduction stored.
mat A numeric matrix. For sequencing a count matrix, gene expression values with
genes in rows and samples/cells in columns. Should contain row and column
names.
method String. Either "scree_plot", "avg_inertia", "maj_inertia" or "elbow_rule" (see
Details section). Default "scree_plot".
reps Integer. Number of permutations to perform when choosing "elbow_rule". De-
fault 3.
python DEPRACTED. A logical value indicating whether to use singular value de-

return_plot

assay

slot

Details

composition from the python package torch. This implementation dramatically
speeds up computation compared to svd() in R.

TRUE/FALSE. Whether a plot should be returned when choosing "elbow_rule".
Default FALSE.

Arguments forwarded to methods.

Character. The assay from which to extract the count matrix for SVD, e.g.
"RNA" for Seurat objects or "counts"/"logcounts" for SingleCellExperiments.

Character. Data slot of the Seurat assay. E.g. "data" or "counts". Default
"counts".

» "avg_inertia" calculates the number of dimensions in which the inertia is above the average

inertia.

* "maj_inertia" calculates the number of dimensions in which cumulatively explain up to 80%
of the total inertia.

 "scree_plot" plots a scree plot.

 "elbow_rule" formalization of the commonly used elbow rule. Permutes the rows for each
column and reruns cacomp () for a total of reps times. The number of relevant dimensions is
obtained from the point where the line for the explained inertia of the permuted data intersects
with the actual data.

pick_dims 35

Value

For avg_inertia, maj_inertia and elbow_rule (when return_plot=FALSE) returns an integer,
indicating the suggested number of dimensions to use.

* scree_plot returns a ggplot object.

e elbow_rule (for return_plot=TRUE) returns a list with two elements: "dims" contains the
number of dimensions and "plot" a ggplot.

Examples

Simulate counts

cnts <- mapply(function(x){rpois(n = 500, lambda = x)},
X = sample(1:20, 50, replace = TRUE))

rownames(cnts) <- paste@("gene_", T1:nrow(cnts))

colnames(cnts) <- paste@("cell_", 1:ncol(cnts))

Run correspondence analysis.
ca <- cacomp(obj = cnts)

pick dimensions with the elbow rule. Returns list.

set.seed(2358)
pd <- pick_dims(obj = ca,

mat = cnts,

method = "elbow_rule”,
return_plot = TRUE,
reps = 10)

pd$plot
ca_sub <- subset_dims(ca, dims = pd$dims)

pick dimensions which explain cumulatively >80% of total inertia.
Returns vector.
pd <- pick_dims(obj = ca,
method = "maj_inertia")
ca_sub <- subset_dims(ca, dims = pd)

HHHEHHAEBEEEE AR
pick_dims for Seurat objects
HHHEHHPEEE AR
library(SeuratObject)
set.seed(1234)

Simulate counts

cnts <- mapply(function(x){rpois(n = 500, lambda = x)},
x = sample(1:20, 50, replace = TRUE))

rownames(cnts) <- paste@(”"gene_", 1:nrow(cnts))

colnames(cnts) <- paste@("cell_", 1:ncol(cnts))

n

Create Seurat object
seu <- CreateSeuratObject(counts = cnts)

run CA and save in dim. reduction slot.
seu <- cacomp(seu, return_input = TRUE, assay = "RNA", slot = "counts")

pick dimensions
pd <- pick_dims(obj = seu,

36 plot_enrichment

method = "maj_inertia”,
assay = "RNA",
slot = "counts")

B
pick_dims for SingleCellExperiment objects
HHHEHHAEHEEHE AR R
library(SingleCellExperiment)

set.seed(1234)

Simulate counts

cnts <- mapply(function(x){rpois(n = 500, lambda = x)},
x = sample(1:20, 50, replace = TRUE))

rownames(cnts) <- paste@("gene_", T:nrow(cnts))

colnames(cnts) <- paste@("cell_", 1:ncol(cnts))

Create SingleCellExperiment object

sce <- SingleCellExperiment(assays=list(counts=cnts))

run CA and save in dim. reduction slot.
sce <- cacomp(sce, return_input = TRUE, assay = "counts")

pick dimensions
pd <- pick_dims(obj = sce,

method = "maj_inertia”,
assay = "counts")
plot_enrichment Generates plot for results from apl_topGO

Description

Plots the results from the data frame generated via apl_topGO.

Usage

plot_enrichment(genenr, ntop = 10)

Arguments
genenr data.frame. gene enrichment results table.
ntop numeric. Number of elements to plot.
Value

Returns a ggplot plot.

Examples

library(SeuratObject)

set.seed(1234)

cnts <- SeuratObject::LayerData(pbmc_small, assay = "RNA", layer = "counts")
cnts <- as.matrix(cnts)

random_direction_cutoff 37

Run CA on example from Seurat

ca <- cacomp(pbmc_small,
princ_coords = 3,
return_input = FALSE,
assay = "RNA",
slot = "counts”)

grp <- which(Idents(pbmc_small) == 2)
ca <- apl_coords(ca, group = grp)
ca <- apl_score(ca,

mat = cnts)

enr <- apl_topGO(ca,
ontology = "BP",

organism = "hs")

plot_enrichment(enr)

random_direction_cutoff
Random direction association plot coordinates

Description

Calculates matrix of apl coordinates for random directions

Usage

random_direction_cutoff(caobj, dims = caobj@dims, reps = 100)

Arguments
caobj A "cacomp" object with principal row coordinates and standardized column co-
ordinates calculated.
dims Integer. Number of CA dimensions to retain. Needs to be the same as in caobj!
reps Integer. Number of permutations to perform.
Value

List with permuted apl coordinates ("apl_perm") and, a list of saved ca components ("saved_ca")
that allow for quick recomputation of the CA results. For random_direction_cutoff this saved_ca is
empty.

38 rm_zeros

recompute Recompute missing values of cacomp object.

Description

The caobj needs to have the std_coords_cols, the prin_coords_rows and D calculated. From this the
remainder will be calculated. Future updates might extend this functionality.

Usage
recompute(calist, mat, ...)
Arguments
calist A list with std_coords_cols, the prin_coords_rows and D.
mat A matrix from which the cacomp object is derived from.
Further arguments forwarded to cacomp.
Value

A cacomp object with additional calculated row_masses, col_masses, std_coords_rows, U and V.

rm_zeros removes 0-only rows and columns in a matrix.

Description

removes 0-only rows and columns in a matrix.

Usage

rm_zeros(obj)

Arguments

obj A matrix.

Value

Input matrix with rows & columns consisting of only 0 removed.

run_APL 39

run_APL Compute and plot Association Plot

Description

Computes singular value decomposition and coordinates for the Association Plot.

runAPL.SingleCellExperiment: Computes singular value decomposition and coordinates for the
Association Plot from SingleCellExperiment objects with reducedDim(obj, "CA") slot (optional).

runAPL.Seurat: Computes singular value decomposition and coordinates for the Association Plot
from Seurat objects, optionally with a DimReduc Object in the "CA" slot.

Usage

run_APL (
obj,
group,
caobj = NULL,
dims = NULL,
nrow = 10,
top = 5000,
clip = FALSE,
score = TRUE,
score_method = "permutation”,

mark_rows = NULL,
mark_cols = NULL,
reps = 3,

python = FALSE,
row_labs = TRUE,
col_labs = TRUE,
type = "plotly”,
show_cols = FALSE,
show_rows = TRUE,
score_cutoff = 0,

score_color = "rainbow"”,
pd_method = "elbow_rule”,
pd_reps = 1,
pd_use = TRUE
)
runAPL (
obj,
group,
caobj = NULL,
dims = NULL,
nrow = 10,
top = 5000,
clip = FALSE,
score = TRUE,
score_method = "permutation”,

mark_rows = NULL,

40

)

mark_cols = caobj@group,
reps = 3,

python = FALSE,

row_labs = TRUE,
col_labs = TRUE,

type = "plotly”,
show_cols = FALSE,
show_rows = TRUE,
score_cutoff = 0,
score_color = "rainbow”,
pd_method = "elbow_rule”,
pd_reps = 1,

pd_use = TRUE,

S4 method for signature
runAPL (

)

obj,

group,

caobj = NULL,
dims = NULL,
nrow = 10,
top = 5000,
clip = FALSE,
score = TRUE,

'matrix’

score_method = "permutation”,

mark_rows = NULL,
mark_cols = NULL,

reps = 3,

python = FALSE,

row_labs = TRUE,
col_labs = TRUE,

type = "plotly”,
show_cols = FALSE,
show_rows = TRUE,
score_cutoff = 0,
score_color = "rainbow",
pd_method = "elbow_rule”,
pd_reps = 1,

pd_use = TRUE,

S4 method for signature
runAPL (

obj,

group,

caobj = NULL,
dims = NULL,
nrow = 10,
top = 5000,

'SingleCellExperiment’

run_APL

run_APL

clip = FALSE,
score = TRUE,
score_method = "permutation”,

mark_rows = NULL,
mark_cols = NULL,
reps = 3,

python = FALSE,
row_labs = TRUE,
col_labs = TRUE,
type = "plotly”,
show_cols = FALSE,
show_rows = TRUE,
score_cutoff = 0,

score_color = "rainbow”,
pd_method = "elbow_rule”,
pd_reps = 1,

pd_use = TRUE,

assay = "counts”

)

S4 method for signature 'Seurat'’
runAPL (

obj,

group,

caobj = NULL,

dims = NULL,

nrow = 10,

top = 5000,

clip = FALSE,

score = TRUE,

score_method = "permutation”,

mark_rows = NULL,
mark_cols = NULL,
reps = 3,

python = FALSE,
row_labs = TRUE,
col_labs = TRUE,
type = "plotly”,
show_cols = FALSE,
show_rows = TRUE,
score_cutoff = 0,

score_color = "rainbow",
pd_method = "elbow_rule”,
pd_reps = 1,

pd_use = TRUE,
assay = SeuratObject::DefaultAssay(obj),
slot = "counts”

)

S4 method for signature 'dgCMatrix'

run_APL

runAPL (
obj,
group,
caobj = NULL,
dims = NULL,
nrow = 10,
top = 5000,
clip = FALSE,
score = TRUE,
score_method = "permutation”,
mark_rows = NULL,
mark_cols = NULL,
reps = 3,

python = FALSE,
row_labs = TRUE,

col_labs =

TRUE,

type = "plotly”,
show_cols = FALSE,
show_rows = TRUE,
score_cutoff = 0,
score_color = "rainbow",
pd_method = "elbow_rule”,

pd_reps = 1,

pd_use = TRUE,

Arguments

obj

group

caobj

dims

nrow

top
clip

score

score_method

mark_rows

mark_cols

A numeric matrix. For sequencing usually a count matrix, gene expression val-
ues with genes in rows and samples/cells in columns. Should contain row and
column names.

Numeric/Character. Vector of indices or column names of the columns to calcu-
late centroid/x-axis direction.

A "cacomp" object as outputted from ‘cacomp()‘. If not supplied will be calcu-
lated. Default NULL.

Integer. Number of CA dimensions to retain. If NULL: (0.2 * min(nrow(A),
ncol(A)) - 1).

Integer. The top nrow scored row labels will be added to the plot if score =
TRUE. Default 10.

Integer. Number of most variable rows to retain. Set NULL to keep all.

logical. Whether residuals should be clipped if they are higher/lower than a
specified cutoff

Logical. Whether rows should be scored and ranked. Ignored when a vector is
supplied to mark_rows. Default TRUE.

Method to calculate the cutoff. Either "random" for random direction method or
"permutation” for the permutation method.

Character vector. Names of rows that should be highlighted in the plot. If not
NULL, score is ignored. Default NULL.

Character vector. Names of cols that should be highlighted in the plot.

run_APL

reps

python

row_labs

col_labs

type

show_cols
show_rows

score_cutoff

score_color
pd_method
pd_reps

pd_use

assay

slot

Details

43

Integer. Number of permutations during scoring. Default 3.

DEPRACTED. A logical value indicating whether to use singular-value de-
composition from the python package torch. This implementation dramatically
speeds up computation compared to ‘svd()‘ in R when calculating the full SVD.
This parameter only works when dims==NULL or dims==rank(mat), where
caculating a full SVD is demanded.

Logical. Whether labels for rows indicated by rows_idx should be labeled with
text. Default TRUE.

Logical. Whether labels for columns indicated by cols_idx shouls be labeled
with text. Default FALSE.

"ggplot"/"plotly". For a static plot a string "ggplot", for an interactive plot
"plotly". Default "ggplot".

Logical. Whether column points should be plotted.
Logical. Whether row points should be plotted.

Numeric. Rows (genes) with a score >= score_cutoff will be colored according
to their score if show_score = TRUE.

Either "rainbow" or "viridis".

Which method to use for pick_dims (pick_dims).

Number of repetitions performed when using "elbow_rule" in ‘pick_dims‘. (pick_dims)

Whether to use ‘pick_dims* (pick_dims) to determine the number of dimen-
sions. Ignored when ‘dims° is set by the user.

Arguments forwarded to methods.

Character. The assay from which extract the count matrix for SVD, e.g. "RNA"
for Seurat objects or "counts"/"logcounts" for SingleCellExperiments.

character. The Seurat assay slot from which to extract the count matrix.

The function is a wrapper that calls ‘cacomp()‘, ‘apl_coords()‘, ‘apl_score()‘ and finally ‘apl()‘
for ease of use. The chosen defaults are most useful for genomics experiments, but for more fine
grained control the functions can be also run individually for the same results. If score = FALSE,
nrow and reps are ignored. If mark_rows is not NULL score is treated as if FALSE.

Value

Association Plot (plotly object).

References

Association Plots: Visualizing associations in high-dimensional correspondence analysis biplots
Elzbieta Gralinska, Martin Vingron
bioRxiv 2020.10.23.352096; doi: https://doi.org/10.1101/2020.10.23.352096

44

Examples

set.seed(1234)

Simulate counts
cnts <- mapply(function(x){rpois(n = 500, lambda = x)},
x = sample(1:100, 50, replace = TRUE))

rownames(cnts) <- paste@(”gene_", 1:nrow(cnts))
colnames(cnts) <- paste@("cell_", 1:ncol(cnts))

(nonsensical) APL
APL:::run_APL(obj = cnts,
group = 1:10,
dims = 10,
top = 500,
score = TRUE,
show_cols = TRUE,
type = "ggplot"”)
set.seed(1234)

Simulate counts

cnts <- mapply(function(x){rpois(n = 500, lambda = x)},
X = sample(1:100, 50, replace = TRUE))

rownames(cnts) <- paste@("gene_", T1:nrow(cnts))

colnames(cnts) <- paste@("cell_", 1:ncol(cnts))

(nonsensical) APL
runAPL(obj = cnts,
group = 1:10,
dims = 10,
top = 500,
score = TRUE,
show_cols = TRUE,
type = "ggplot"”)

HH#HHHEH

SingleCellExperiment
A
library(SingleCellExperiment)
set.seed(1234)

Simulate counts

cnts <- mapply(function(x){rpois(n = 500, lambda = x)},
x = sample(1:100, 50, replace = TRUE))

rownames(cnts) <- paste@("gene_", T:nrow(cnts))

colnames(cnts) <- paste@("cell_", 1:ncol(cnts))

sce <- SingleCellExperiment(assays=list(counts=cnts))

(nonsensical) APL
runAPL (obj = sce,
group = 1:10,
dims = 10,
top = 500,
score = TRUE,
show_cols = TRUE,
type = "ggplot”,

run_APL

run_cacomp

assay = "counts")

HHHHHHHEHE

Seurat
HHHEHHHEAEE
library(SeuratObject)
set.seed(1234)

Simulate counts
cnts <- mapply(function(x){rpois(n = 500, lambda = x)},
x = sample(1:100, 50, replace = TRUE))

rownames(cnts) <- paste@(”gene_", 1:nrow(cnts))
colnames(cnts) <- paste@(”cell_", 1:ncol(cnts))

seu <- CreateSeuratObject(counts = cnts)

(nonsensical) APL
runAPL(obj = seu,

group = 1:10,
dims = 10,
top = 500,
score = TRUE,

show_cols = TRUE,
type = "ggplot”,
assay = "RNA",
slot = "counts")
set.seed(1234)

Simulate counts
cnts <- mapply(function(x){rpois(n = 500, lambda = x)},
X = sample(seq(0.01,0.1,by=0.01), 50, replace = TRUE))
rownames(cnts) <- paste@(”"gene_", 1:nrow(cnts))
colnames(cnts) <- paste@("cell_", 1:ncol(cnts))
cnts <- Matrix::Matrix(cnts)

(nonsensical) APL
runAPL(obj = cnts,

group = 1:10,
dims = 10,
top = 500,
score = TRUE,

show_cols = TRUE,
type = "ggplot”)

45

run_cacom Internal function for ‘cacomp
p P

Description

‘run_cacomp® performs correspondence analysis on a matrix and returns the transformed data.

Usage

run_cacomp(

46

obj,

run_cacomp

coords = TRUE,

princ_coords

:3,

python = FALSE,

dims = 100,
top = 5000,

inertia = TRUE,
rm_zeros = TRUE,

residuals =

n

pearson”,

cutoff = NULL,

clip = FALSE,

Arguments

obj

coords

princ_coords

python

dims

top

inertia

rm_zeros

residuals

cutoff

clip

Details

The calculation is

A numeric matrix or Seurat/SingleCellExperiment object. For sequencing a
count matrix, gene expression values with genes in rows and samples/cells in
columns. Should contain row and column names.

Logical. Indicates whether CA standard coordinates should be calculated.

Integer. Number indicating whether principal coordinates should be calculated
for the rows (=1), columns (=2), both (=3) or none (=0).

DEPRACTED. A logical value indicating whether to use singular-value de-
composition from the python package torch. This implementation dramatically
speeds up computation compared to ‘svd()‘ in R when calculating the full SVD.
This parameter only works when dims==NULL or dims==rank(mat), where
caculating a full SVD is demanded.

Integer. Number of CA dimensions to retain. If NULL: (0.2 * min(nrow(A),
ncol(A)) - 1).

Integer. Number of most variable rows to retain. Set NULL to keep all.

Logical. Whether total, row and column inertias should be calculated and re-
turned.

Logical. Whether rows & cols containing only Os should be removed. Keeping
zero only rows/cols might lead to unexpected results.

character string. Specifies which kind of residuals should be calculated. Can be
"pearson” (default), "freemantukey” or "NB" for negative-binomial.

numeric. Residuals that are larger than cutoff or lower than -cutoff are clipped
to cutoff.

logical. Whether residuals should be clipped if they are higher/lower than a
specified cutoff

Arguments forwarded to methods.

performed according to the work of Michael Greenacre. When working with

large matrices, CA coordinates and principal coordinates should only be computed when needed to
save computational time.

scree_plot 47

Value

Returns a named list of class "cacomp" with components U, V and D: The results from the SVD.
row_masses and col_masses: Row and columns masses. top_rows: How many of the most variable
rows/genes were retained for the analysis. tot_inertia, row_inertia and col_inertia: Only if inertia =
TRUE. Total, row and column inertia respectively.

References

Greenacre, M. Correspondence Analysis in Practice, Third Edition, 2017.

scree_plot Scree Plot

Description

Plots a scree plot.

Usage
scree_plot(df)

Arguments

df A data frame with columns "dims" and "inertia".

Value

Returns a ggplot object.

show. cacomp Prints cacomp object

Description

Provides more user friendly printing of cacomp objects.

Usage

show.cacomp(object)

S4 method for signature 'cacomp'
show(object)

Arguments

object cacomp object to print

Value

prints summary information about cacomp object.

48 subset_dims

Examples

Simulate scRNAseq data.

cnts <- data.frame(cell_1 = rpois(10, 5),
cell_2 = rpois(10, 10),
cell_3 = rpois(10, 20))

rownames(cnts) <- paste@("gene_", 1:10)

cnts <- as.matrix(cnts)

Run correspondence analysis.
ca <- cacomp(obj = cnts, princ_coords = 3, top = 5)

ca

subset_dims Subset dimensions of a caobj

Description

Subsets the dimensions according to user input.

Usage

subset_dims(caobj, dims)

Arguments

caobj A caobj.

dims Integer. Number of dimensions.
Value

Returns caobj.

Examples

Simulate scRNAseq data.

cnts <- data.frame(cell_1 = rpois(10, 5),
cell_2 = rpois(10, 10),
cell_3 = rpois(10, 20))

rownames(cnts) <- paste@("gene_", 1:10)

cnts <- as.matrix(cnts)

Run correspondence analysis.
ca <- cacomp(cnts)
ca <- subset_dims(ca, 2)

var_rows 49

var_rows Find most variable rows

Description

Calculates the variance of the chi-square component matrix and selects the rows with the highest
variance, e.g. 5,000.

Usage
var_rows(mat, residuals = "pearson”, top = 5000, ...)
Arguments
mat A numeric matrix. For sequencing a count matrix, gene expression values with
genes in rows and samples/cells in columns. Should contain row and column
names.
residuals character string. Specifies which kind of residuals should be calculated. Can be
"pearson" (default), "freemantukey" or "NB" for negative-binomial.
top Integer. Number of most variable rows to retain. Default 5000.
Further arguments for ‘calc_residuals®.
Value

Returns a matrix, which consists of the top variable rows of mat.

Examples

set.seed(1234)

Simulate counts

cnts <- mapply(function(x){rpois(n = 500, lambda = x)},
x = sample(1:20, 50, replace = TRUE))

rownames(cnts) <- paste@(”gene_", 1:nrow(cnts))

colnames(cnts) <- paste@("cell_", 1:ncol(cnts))

Choose top 5000 most variable genes
cnts <- var_rows(mat = cnts, top = 5000)

%>% Pipe operator

Description

See magrittr: :%>% for details.

Usage
lhs %>% rhs

50 %>%

Arguments

lhs A value or the magrittr placeholder.

rhs A function call using the magrittr semantics.
Value

magrittr::%>%

Examples

X <- 1:100
X %>% head()

Index

* internal
%>%, 49
%>%, 49, 49, 50

apl, 3

apl_coords, 4

apl_ggplot, 5

apl_plotly, 6

apl_score, 8

apl_topGo, 9

as.cacomp, 11

as.cacomp, cacomp-method (as.cacomp), 11

as.cacomp, list-method (as.cacomp), 11

as.cacomp, Seurat-method (as.cacomp), 11

as.cacomp,SingleCellExperiment-method
(as.cacomp), 11

as.list,cacomp-method, 13

ca_3Dplot, 21

ca_3Dplot, cacomp-method (ca_3Dplot), 21

ca_3Dplot, Seurat-method (ca_3Dplot), 21

ca_3Dplot,SingleCellExperiment-method
(ca_3Dplot), 21

ca_biplot, 23

ca_biplot,cacomp-method (ca_biplot), 23

ca_biplot,Seurat-method (ca_biplot), 23

ca_biplot,SingleCellExperiment-method
(ca_biplot), 23

ca_coords, 26

cacomp, 14

cacomp,dgCMatrix-method (cacomp), 14

cacomp,matrix-method (cacomp), 14

cacomp, Seurat-method (cacomp), 14

cacomp, SingleCellExperiment-method
(cacomp), 14

cacomp-class, 18

cacomp_names, 19

cacomp_slot, 20

calc_residuals, 21

check_cacomp, 27

clip_residuals, 27

comp_ft_residuals, 28

comp_NB_residuals, 28

comp_std_residuals, 29

51

elbow_method, 30

inertia_rows, 31
is.empty, 32

new_cacomp (cacomp-class), 18

permutation_cutoff, 32

pick_dims, 33,43

pick_dims,cacomp-method (pick_dims), 33

pick_dims,Seurat-method (pick_dims), 33

pick_dims,SingleCellExperiment-method
(pick_dims), 33

plot_enrichment, 36

random_direction_cutoff, 37

recompute, 38

rm_zeros, 38

run_APL, 39

run_cacomp, 45

runAPL (run_APL), 39

runAPL,dgCMatrix-method (run_APL), 39

runAPL ,matrix-method (run_APL), 39

runAPL, Seurat-method (run_APL), 39

runAPL,SingleCellExperiment-method
(run_APL), 39

scree_plot, 47
show, cacomp-method (show.cacomp), 47
show. cacomp, 47
subset_dims, 48

var_rows, 49

	apl
	apl_coords
	apl_ggplot
	apl_plotly
	apl_score
	apl_topGO
	as.cacomp
	as.list,cacomp-method
	cacomp
	cacomp-class
	cacomp_names
	cacomp_slot
	calc_residuals
	ca_3Dplot
	ca_biplot
	ca_coords
	check_cacomp
	clip_residuals
	comp_ft_residuals
	comp_NB_residuals
	comp_std_residuals
	elbow_method
	inertia_rows
	is.empty
	permutation_cutoff
	pick_dims
	plot_enrichment
	random_direction_cutoff
	recompute
	rm_zeros
	run_APL
	run_cacomp
	scree_plot
	show.cacomp
	subset_dims
	var_rows
	>
	Index

